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Abstract. In the present paper we study a class N (λ) consisting of analytic functions f

which satisfy the condition∣∣∣∣∣−z3
(

z

f(z)

)′′′

+ f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ λ,
where 0 < λ ≤ 1 and f(z)/z 6= 0 in the open unit disk E. For given real numbers

α, 0 < α ≤ 1, or γ, 0 ≤ γ < 1 , we determine ranges of λ such that functions in N (λ)

are strongly starlike of order α or starlike of order γ.

1. Introduction

Let A denote the class of all functions f that are analytic in the open unit disk E = {z :

|z| < 1} and are normalized by the conditions f(0)=f ′(0) − 1 = 0. We denote by S the

subclass of A consisting of functions univalent in E. A function f ∈ A is said to be starlike

in E if f is univalent and f(E) is starlike domain with respect to z = 0. The class of all

starlike functions is denoted by S∗. It is well known that f ∈ A is starlike with respect to

the origin if and only if

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E.

For 0 ≤ γ < 1, we define the class S∗(γ) (called the class of starlike functions of order γ) as

under:

S∗(γ) =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> γ, z ∈ E

}
.

Clearly, S∗(0) ≡ S∗. A function f ∈ A is said to be strongly starlike of order α, 0 < α ≤ 1

in E iff it satisfies |arg (zf ′(z)/f(z))| < απ/2, z ∈ E. We denote by Sα the class of all such

functions. Note that S1 ≡ S∗(0) ≡ S∗. For 0 < α < 1, Sα consists only of bounded starlike

functions and therefore, the inclusion Sα ⊂ S∗ is proper.

We say that f ∈ R(γ), γ ∈ (0, 1] if f ∈ A and |arg f ′(z)| < γπ/2. It is well-known that the
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functions in R(1) are Close-to-convex and hence univalent in E (see, [2, 14]).

For two functions f and g analytic in E with f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n,

their convolution or Hadamard product is denoted by f ∗ g and is an analytic function in E

defined by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

For a real number λ, λ ≥ 0, and an analytic function f with z/f(z) 6= 0 in E define

U(λ) =

{
f ∈ A :

∣∣∣∣∣f ′(z)

(
z
f(z)

)2

− 1

∣∣∣∣∣ ≤ λ, z ∈ E

}
,

P(λ) =

{
f ∈ A :

∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ λ, z ∈ E
}
,

M(λ) =

{
f ∈ A :

∣∣∣∣∣z2
(

z

f(z)

)′′
+ f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ λ, z ∈ E

}
,

N (λ) =

{
f ∈ A :

∣∣∣∣∣−z3
(

z

f(z)

)′′′
+ f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ λ, z ∈ E

}
.

Denote the classes U(1) ,P(1) ,M(1) and N (1) by U ,P ,M and N , respectively.

The study of these classes started in 1972 when Ozaki and Nunokawa [9] proved that

the functions in U(λ) are univalent for 0 < λ ≤ 1. In 2001, Obradović and Ponnusamy [4]

proved that P(2λ) ( U(λ). It is easy to observe that the Koebe function z/(1− z)2 belongs

to U but U * S∗ (see[1]). Ponnusamy and Vasundhra [12] obtained conditions on λ so that

U(λ) ⊆ S∗. For further details on these classes including some interesting generalizations we

refer to [3, 4, 8, 11, 12, 13].

In 2011, Obradović and Ponnusamy [5] studied the classM(λ) and further, in 2012 , in [6],

they investigated the class N and proved the strict inclusions N (M ( P ( U ( S. They

also obtained some necessary and sufficient conditions for functions to be in the class N and

conjectured that N is not contained in S∗. The work presented in this paper is inspired by

this open problem. We study the class N (λ) where 0 < λ ≤ 1 and find conditions on the

parameter λ so that the the functions in the class N (λ) are starlike or are strongly starlike

of some order. We also find N -radius of a function defined in terms of a function in the

class U . Note that for two subclasses F and G of A, we say that r0 is the G-radius in F
if for every f ∈ F , r−1f(rz) ∈ G for r ≤ r0 and r0 is the maximum value for which this holds.
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2. PRELIMINARY LEMMAS

Let Pn denote the class of functions p analytic in E such that p(k)(0) = 0 for k = 0, 1, 2.....n,

where p(0)(0)=p(0). Similarly with w(0)(0)=w(0), we set Bn={w: w is analytic, |w(z)| ≤ 1

in E and w(k)(0) = 0 for k = 0, 1, 2....n }. For each w(z) ∈ Bk, Schwarz’s lemma gives:

|w(z)| ≤ |z|k+1 for n = 0, 1, 2, ...k and z ∈ E .

To prove our results, we shall need the following lemmas.

Lemma 2.1. [7, Lemma1c] Let f ∈ U have the series representation z/f(z) = 1+
∑∞

n=1 bnz
n.

Then
∞∑
n=2

(n− 1)2|bn|2 ≤ 1.

Lemma 2.2. [6, Theorem 2] Let φ(z) = 1 +
∑∞

n=1 bnz
n be a non-vanishing analytic function

in E and that it satisfies the condition

∞∑
n=2

(n− 1)3|bn| ≤ 1.

Then the function f(z) = z/φ(z) is in N .

3. MAIN RESULTS

In the following result we determine a range of λ such the N (λ) ⊂ Sα for some given real

number α, 0 < α ≤ 1.

Theorem 3.1. Let f(z) = z + a2z
2 + a3z

3 + · · · be in N (λ) and let α, 0 < α ≤ 1, be some

real number and |a2| ≤ sin(απ/2).Then f ∈ Sα provided 0 < λ ≤ λ∗(α, |a2|), where

λ∗(α, |a2|) =
−|a2| cos(απ/4) + sin(απ/4)

√
4 cos2(απ/4)− |a2|2

2 cos(απ/4)
. (3.1)

Proof. As f ∈ N (λ), so there exists a function w ∈ B1 such that

− z3
(

z

f(z)

)′′′
+ f ′(z)

(
z

f(z)

)2

− 1 = λw(z). (3.2)

Write

p(z) = f ′(z)

(
z

f(z)

)2

− 1 =

(
z

f(z)

)
− z

(
z

f(z)

)′
− 1. (3.3)
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Obviously, p is analytic in E with p(0) = p′(0) = 0. Hence p ∈ P1. Then (3.2) is equivalent

to

z2p′′(z)− zp′(z) + p(z) = λw(z). (3.4)

Now, let

p(z) =
∞∑
k=2

pkz
k and w(z) =

∞∑
k=2

wkz
k.

A comparison of the coefficients of zk on both sides in (3.4) gives that

pk =
λwk

(k − 1)2
for k ≥ 2.

Using this, we see that

p(z) = λ
∞∑
k=2

wk
(k − 1)2

zk = λw(z) ∗
∞∑
k=1

1

k2
zk+1

Next, we recall (see [10]) that

∞∑
k=1

1

(k + a)q
zk =

1

Γ(q)

∫ 1

0

z(log(1/t))q−1
ta

1− tz
dt for Re a > −1 and Re q > 1.

Using this result, it follows that

p(z) = λw(z) ∗ z2
∫ 1

0

log(1/t)

1− tz
dt

= λ

∫ 1

0

w(tz)

t2
log(1/t)dt. (3.5)

As w ∈ B1, from Schwarz’s Lemma it follows that |w(tz)| ≤ |(tz)|2 and, in view of (3.3) and

(3.5), we find that∣∣∣∣∣f ′(z)

(
z

f(z)

)2

− 1

∣∣∣∣∣ ≤ λ

∫ 1

0

|w(tz)|
t2

log(1/t)dt ≤ λ|z|2 < λ,

which gives ∣∣∣∣∣arg

[
f ′(z)

(
z

f(z)

)2
]∣∣∣∣∣ ≤ arcsin(λ). (3.6)
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In view of (3.3), we can write (3.5) as

−z
(

z

f(z)
− 1 + a2z

)′
+

(
z

f(z)
− 1 + a2z

)
= λ

∫ 1

0

w(tz)

t2
log(1/t)dt.

From this we easily obtain

z

f(z)
= 1− a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt. (3.7)

Then, as w ∈ B1 and z ∈ E, we have∣∣∣∣ z

f(z)
− 1

∣∣∣∣ ≤ |a2||z|+ λ

2

∫ 1

0

|w(tz)|
t2

(log(1/t))2dt,

≤ |a2||z|+
λ

2
|z|2

∫ 1

0

(log(1/t))2dt,

≤ |a2||z|+
λ

2
Γ3|z|2,

< |a2|+ λ .

From the above inequality we conclude that∣∣∣∣arg

(
z

f(z)

)∣∣∣∣ ≤ arcsin(|a2|+ λ). (3.8)

Further

arg

(
zf ′(z)

f(z)

)
= arg

[
f ′(z)

(
z

f(z)

)2
]
− arg

(
z

f(z)

)
.

Using (3.6) and (3.8), we obtain∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ ≤
∣∣∣∣∣arg

[
f ′(z)

(
z

f(z)

)2
]∣∣∣∣∣+

∣∣∣∣arg

(
z

f(z)

)∣∣∣∣
< arcsin(λ) + arcsin(|a2|+ λ).

Now, the desired conclusion follows if

arcsin(λ) + arcsin(|a2|+ λ) ≤ απ

2
.

It is easy to verify that we can apply the result: arcsin(x) + arcsin(y) = arcsin(x
√

1− y2 +

y
√

1− x2), x, y ∈ [−1, 1] and x2 + y2 ≤ 1. Therefore, f ∈ Sα, whenever

arcsin
[
λ
√

1− (|a2|+ λ)2 + (|a2|+ λ)
√

1− λ2
]
≤ απ

2
.
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Equivalently,

λ
√

1− (|a2|+ λ)2 ≤ sin
απ

2
− (|a2|+ λ)

√
1− λ2

Squaring both sides of above inequality and then simplifying the resulting terms, we see that

it is equivalent to

[√
1− λ2 sin

απ

2
− (|a2|+ λ)

]2
≥ λ2 cos2

απ

2
or,

√
1− λ2 sin

απ

2
− (|a2|+ λ) ≥ λ cos

απ

2
A simple calculation shows that above inequality is equivalent to

2λ2 + 2|a2|λ−
sin2(απ

2
)− |a2|2

1 + cos(απ
2

)
≤ 0,

which holds true for 0 < λ ≤ λ∗(α, |a2|), where λ∗(α, |a2|) is given by (3.1). �

For α = 1, Theorem 3.1 immediately implies the following result.

Corollary 3.2. If f(z) = z + a2z
2 + a3z

3 + · · · be in N (λ) and |a2| = |f ′′(0)|/2 ≤ 1, then

f ∈ S∗ whenever 0 < λ ≤ −|a2|+
√

2−|a2|2
2

.

Remark 3.3. In Theorem 3.1, if we replace λ∗ by λ/2, we obtain the following result of

Obradović and Ponnusamy [4, Corollary 1.10] :

If 0 < λ ≤ (−|f ′′(0)| cos(πα/4) + sin(πα/4)
√

16 cos2(πα/4)− |f ′′(0)|2)/2 cos(πα/4) with

α ∈ (0, 1], then we have the inclusion P(λ) ⊆ Sα.

Theorem 3.4. Let f(z) = z + a2z
2 + a3z

3 + · · · be in N (λ) with |a2| = |f ′′(0)|/2 ≤ 1,

γ ∈ (0, 1] and λγ satisfy the inequality
√

1− λ2 sin γπ/2 ≥ 2(|a2|+ λ)
√

1− (|a2|+ λ)2 + λ cos γπ/2. (3.9)

Then f ∈ R(γ) for 0 < λ ≤ λγ.

Proof. Since

|arg f ′(z)| ≤

∣∣∣∣∣arg f ′(z)

(
z

f(z)

)2
∣∣∣∣∣+ 2

∣∣∣∣arg

(
z

f(z)

)∣∣∣∣ ,
Using (3.6) and (3.8) in above inequality, it follows that

|arg f ′(z)| < arcsin(λ) + 2 arcsin(|a2|+ λ). (3.10)
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Then from (3.10), we see that |arg f ′(z)| < γπ/2 holds in E whenever

arcsin(λ) + 2 arcsin(|a2|+ λ) ≤ γπ/2. (3.11)

Using the formula 2 arcsin(x) = arcsin(2x
√

1− x2), x ∈ (−1/
√

2, 1/
√

2) and then by a com-

putation and simplification, we find that inequality (3.11) is equivalent to (3.9). �

If a2 = 0 and γ = 1, then Theorem 3.4 gives :

Corollary 3.5. If f(z) = z+ a3z
3 + a4z

4 · · · be in N (λ) and 0 < λ ≤ 1/2, then Ref ′(z) > 0

in E.

Remark 3.6. In Theorem 3.4, if we replace λ by λ/2, we obtain the following result of

Obradović and Ponnusamy [4, Corollary 1.13] :

Let f ∈ P(λ). Suppose 0 < λ ≤ 2 and 0 < γ ≤ 1 are given by sin(πγ/2)
√

4− λ2 ≥
(|f ′′(0)|+ λ)

√
4− (|f ′′(0)|+ λ)2 + λ cos(πγ/2). Then we have P(λ) ⊂ R(γ).

In the next result, we find conditions under which functions in N (λ) belong to S∗(γ), 0 ≤
γ < 1.

Theorem 3.7. If f(z) = z + a2z
2 + a3z

3 + · · · be in N (λ) and |a2| = |f ′′(0)|/2 ≤ 1, then

f ∈ S∗(γ), 0 ≤ γ < 1 whenever 0 < λ ≤ (1−γ)−(γ+1)|a2|√
2+γ

.

Proof. As f ∈ N (λ). Then, from (3.5) and in view of (3.3) and (3.7), we obtain

zf ′(z)

f(z)
=
f ′(z)

(
z

f(z)

)2
z

f(z)

=
1 + λ

∫ 1

0
w(tz)
t2

log(1/t)dt

1− a2z − λ
2

∫ 1

0
w(tz)
t2

(log(1/t))2dt
, w ∈ B1 and z ∈ E. (3.12)

Now f ∈ S∗(γ) is equivalent to the condition:

1

1− γ

(
zf ′(z)

f(z)
− γ
)
6= iT, for all T ∈ R and z ∈ E. (3.13)

Using (3.12) in (3.13), we get

λ

∫ 1

0

w(tz)

t2
log(1/t)dt− γ(1− iT )

[
1− a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

]

−iT
[
−a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

]
6= −(1− iT ),
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or equivalently,

1
2

[
λ

∫ 1

0

w(tz)

t2
log(1/t)dt+

(
−a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

)]
+

1

2

1 + iT

1− iT

[
λ

∫ 1

0

w(tz)

t2
log(1/t)dt−

(
−a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

)]
−γ
[
1− a2z −

λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

]
6= −1. (3.14)

If we denote the left-hand side of (3.14) by H(w, T, z) and let

M = sup
T∈R,w∈B1,z∈E

|H(w, T, z)|

then, in view of the rotation invariance property of the space B1, we see that f ∈ S∗(γ) if

M ≤ 1. It can be seen that

M ≤ sup
w∈B1,z∈E

λ

2

∣∣∣∣∫ 1

0

w(tz)

t2
log(1/t)dt− 1

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

∣∣∣∣
+
λ

2

∣∣∣∣∫ 1

0

w(tz)

t2
log(1/t)dt+

1

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

∣∣∣∣+ |a2||z|

+ γ

∣∣∣∣1− |a2||z| − λ

2

∫ 1

0

w(tz)

t2
(log(1/t))2dt

∣∣∣∣
Using the Parallelogram Law: |z1 + z2|+ |z1 − z2| ≤ 2

√
|z1|2 + |z2|2, we have

M ≤ λ sup
w∈B1,z∈E

√∣∣∣∣∫ 1

0

w(tz)

t2
log(1/t)dt

∣∣∣∣2 +

∣∣∣∣12
∫ 1

0

w(tz)

t2
(log(1/t))2dt

∣∣∣∣2


+γ + (1 + γ)|a2||z|+ γ
λ

2

∣∣∣∣∫ 1

0

w(tz)

t2
(log(1/t))2dt

∣∣∣∣ .
As w ∈ B1, so using the fact |w(z)| ≤ |z|2 in E, we get

M ≤ λ sup
z∈E

√(∫ 1

0

log(1/t)dt

)2

+

(∫ 1

0

1

2
(log(1/t))2dt

)2

|z|2

+ γ + (1 + γ)|a2||z|+ γ
λ

2

(∫ 1

0

(log(1/t))2dt

)
|z|2,

= λ(
√

2 + γ)|z|2 + γ + (1 + γ)|a2||z|

Thus (3.13) (or 3.14) holds if 0 < λ ≤ (1−γ)−(γ+1)|a2|√
2+γ

. �
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Corollary 3.8. Let f(z) = z + a2z
2 + a3z

3 + · · · be in N (λ) and a2 = f ′′(0)/2 = 0. Then

f ∈ S∗(γ), 0 ≤ γ < 1 provided 0 < λ ≤ 1−γ√
2+γ

.

Choosing γ = 0 and a2 = f ′′(0)/2 = 0 in Theorem 3.7, we have the following

Corollary 3.9. Let f(z) = z+a3z
3 +a4z

4 · · · be in N (λ) then f ∈ S∗ provided 0 < λ ≤ 1√
2
.

Theorem 3.10. Let f ∈ U be of the form z/f(z) = 1+
∑∞

n=1 bnz
n and g(z) = 1

r
f(rz), z ∈ E.

Then g ∈ N for 0 < r ≤ r0, where r0 ≈ 0.4913 is the unique positive root of the equation

2r10 + 6r8 + 21r6 − 9r4 + 5r2 − 1 = 0. (3.15)

Proof. Since f ∈ U and has the form

f(z) =
z

1 +
∑∞

n=1 bnz
n
, z ∈ E, (3.16)

Therefore, by Lemma 2.1, we have
∞∑
n=2

(n− 1)2|bn|2 ≤ 1. (3.17)

Using (3.16), for 0 < r ≤ 1, we can write

z
1
r
f(rz)

= 1 +
∞∑
n=1

(bnr
n)zn.

In view of Lemma 2.2, we need to show
∞∑
n=2

(n− 1)3|bnrn| ≤ 1, for 0 < r ≤ r0.

Now, in view of Cauchy-Schwarz inequality and (3.17), we have

∞∑
n=2

(n− 1)3|bn|rn ≤

(
∞∑
n=2

(n− 1)2|bn|2
)1/2( ∞∑

n=2

(n− 1)4r2n

)1/2

≤

(
∞∑
n=2

(n− 1)4r2n

)1/2

=

(
r4(1 + 11r2 + 11r4 + r6)

(1− r2)5

)1/2

≤ 1,

provided 0 < r ≤ r0. Using Mathematica, One can verify that
∑∞

n=2(n − 1)4r2n =
r4(1+11r2+11r4+r6)

(1−r2)5 and that equation (3.15) has only one positive real root in (0, 1). �
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